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Abstract. The correlator of vector heavy-quark currents at small q2 is considered in the large-β0 limit. The
leading IR renormalon ambiguity of the sum of the perturbative series is canceled by the UV renormalon
ambiguity of the gluon condensate. The asymptotic behavior of the perturbative series is obtained in
a model-independent way, up to a single unknown normalization factor. Gluon-virtuality distribution
functions for the perturbative correction are calculated.

1 Introduction

The large-order behavior of QCD perturbative series for
various quantities has actively been investigated in recent
years [1]. Most of the results are obtained in the large-β0
limit: β0 is considered to be a positive large parameter, and
the series in β0αs ∼ 1 are summed to all orders. Strictly
speaking, this can only happen in QCD with nf → −∞
flavors. There is some empirical evidence that two-loop
coefficients for many quantities are well approximated by
their leading β0 terms (naive non-abelianization [2]). This
does not mean, however, that the large-order behavior of
QCD perturbative series is reproduced by this limit. It
should be viewed as a toy model demonstrating possible
patterns of large-order behavior of perturbative series, and
having some similarity to QCD.

The correlator of light-quark vector currents has been
investigated, at the first order in 1/β0, in the papers [3,4]
(see also [5], where the result is presented as a double series,
not as a single series [4]). The result can also be re-written
as an integral representation with a transparent physical
meaning [6]. Techniques [3, 4] of calculations at the first
order in 1/β0 are reviewed in [7].

There is also a model-independent approach to the
large-order behavior of QCD perturbative series based on
renormalization group [8,9]. It allows one to find the lead-
ing asymptotic behavior, as well as a few 1/L corrections
to it (where L is the order of perturbation theory), but it
leaves some normalization constants undetermined. Some
applications were considered in [10–12].

In the present paper, we investigate the correlator of
heavy-quarkvector currents at q2 � m2, at thefirst order in
1/β0. We demonstrate that the leading infrared (IR) renor-
malon ambiguity in the perturbative part of this correlator
is compensated by the ultraviolet (UV) renormalon ambi-

a e-mail: grozin@particle.uni-karlsruhe.de
b e-mail: sturm@particle.uni-karlsruhe.de

guity in the gluon condensate, which appears in the leading
power correction (Sect. 3). We apply the renormalization-
group based method to obtain the large-order behavior of
the perturbative series in a model-independent way, up to
a single unknown normalization factor (Sect. 4). We find
the gluon-virtuality distribution functions for the first two
terms in the small-q2 expansion of the correlator (Sect. 5).

2 Correlator up to 1/β0

We consider the correlator

i
∫

dx eiqx 〈T{jµ(x), jν(0)}〉 = (qµqν − q2gµν)Π(q2) (1)

of two vector currents jµ = Q̄γµQ, and expand Π(q2) in
q2/m2 (m is the mass of the heavy flavor Q). To the first
order in 1/β0, the result can be obtained from diagrams like
those in Fig. 1. The integrals in the coefficients of small-q
expansion can be explicitly calculated in Γ -functions [13].
The bare correlator can be written in the form

Π(q2) =
Ncm

−2ε
0

(4π)d/2

∞∑
n=0

(
q2

m2
0

)n

PnΓ (n + ε) (2)

×
[
1 +

1
β0

∞∑
L=1

Fn(ε, Lε)
L

(
β

ε + β

)L

+ O
(

1
β2

0

)]
,

Fig. 1. Diagrams contributing to the correlator at 1/β0
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where Nc is the number of quark colors, m0 is the bare
heavy-quark mass, d = 4−2ε is the space-time dimension,

β = β0
αs(µ)

4π
, β0 =

11
3

CA − 4
3

TFnf (3)

is the β-function at the leading order in 1/β0 (nf is the
number of light flavors, TF is the normalization factor of
the fundamental-representation generators ta defined by
Tr tatb = TFδab, here and below CF and CA are the Casimir
operators in the fundamental and the adjoint representa-
tions), the leading-order coefficients are

P0 =
4
3

, P1 =
4
15

, P2 =
1
35

, . . . (4)

the functions Fn have the form

Fn(ε, u) = CFD(ε)u/ε−1eγε
(

µ2

m2

)u

× Γ (1 + u)Γ (1 + n + u)Γ (2 − u)Γ (n + u + ε)
Γ (n + ε)Γ (3 + n − ε)Γ (2 + 2n + 2u)

× Nn(ε, u) (5)

(where

D(ε) = 6eγεΓ (1 + ε)B(2 − ε, 2 − ε) = 1 +
5
3

ε + · · · (6)

comes from a light-quark loop, γ is the Euler constant),
and

N0(ε, u)

= −2
[
2ε(3 − 2ε) + (3 + 8ε − 8ε2)u + (3 − 2ε)u2

]
,

N1(ε, u) = − 4
3

[
18(9 − 7ε2 + 2ε3)

+ (265 + 60ε − 319ε2 + 96ε3)u

+ (150 + 16ε − 161ε2 + 48ε3)u2

+ (35 − 19ε − 4ε2)u3 + (3 − 2ε)u4
]
,

N2(ε, u) = − 2
9

[
1080(72 − 54ε − 11ε2 + 13ε3 − 2ε4)

+ 2(63240 − 38917ε − 28393ε2 + 21620ε3

−3312ε4)u

+ (77878 − 33759ε − 56299ε2 + 35496ε3

−5184ε4)u2

+ (23447 − 7432ε − 17848ε2 + 9366ε3 − 1152ε4)u3

+ (3895 − 1423ε − 1627ε2 + 478ε3)u4

+ (417 − 190ε − 68ε2)u5 + 9(3 − 2ε)u6
]
,

. . . (7)

The functions Fn(ε, u) at n ≥ 1 are regular at the origin,
and can be expanded in ε and u. Then the coefficient of
1/ε in the 1/β0 term in the square bracket in (2) is [3]

− 1
2

∫ β

0
γn(β)

dβ

β
, (8)

where
γn(β) = −2

β

β0
Fn(−β, 0) . (9)

We should re-express the correlator (2) via the renormal-
ized mass: m0 = Zmm(µ). The MS mass renormalization
constant is, up to the 1/β0 term,

Zm(β) = 1 − 1
2ε

∫ β

0
γm(β)

dβ

β
+

1
2ε2

∫ β

0
γm(β) dβ + · · ·

(10)
where dots mean higher powers of 1/ε, and the mass anoma-
lous dimension is [3]

γm(β) = 2CF
β

β0

1 + (2/3)β
B(2 + β, 2 + β)Γ (3 + β)Γ (1 − β)

.

(11)
Terms with n ≥ 1 in Π(q2) (2) expressed via m(µ) and
αs(µ) must be finite at ε → 0. In particular, the coefficient
of 1/ε must vanish; this happens if γn(β) in (9) is related
to γm(β) (11) by

γn(β) = 2(n − β)γm(β) . (12)

This is indeed so, and not only for n ≥ 1, but also for n = 0
(where this does not follow from the above argument).

We can also compare our result for Π(0) with the cor-
relator of massless-quark currents [3,4]. The 1/β0 term in
β0g

2
0Π(0) can be rewritten as

4
3

Nc

β0

∞∑
L=2

F ′
0(ε, Lε)

L

(
β

ε + β

)L

, (13)

where

F ′
0(ε, u) =

(
µ2

m2

)ε

eγεΓ (1 + ε)
u

u − ε
F0(ε, u − ε) . (14)

The coefficient of 1/ε in this sum is given by the formula
similar to (8), with the anomalous dimension

γ(β) = −2
β

β0
F ′

0(−β, 0) (15)

=
4
3

CF

β0

β2(1 − β)(1 + 2β)2(3 + 2β)2Γ (1 + 2β)
(1 + β)2(2 + β)Γ (1 − β)Γ 3(1 + β)

.

These ultraviolet divergences of the diagrams of Fig. 1 do
not feel the quark mass, and must be the same as in the
massless case. Inserting the color factors into the QED
result [4], we get the 1/β0 term in β0g

2
0Π(q2) for mass-

less quarks:

CFNc
4ε

β0

∞∑
L=2

F (ε, Lε)
L

(
β

ε + β

)L

, (16)
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where the function F (ε, u) defined in [4] can be expressed
via 3F2 hypergeometric function of unit argument. From
the expression (12) in [4] for F (ε, 0), we obtain the same
anomalous dimension (15).

3 IR renormalons in the correlator

When expressed via αs(µ) and m(µ), Π(q2)−Π(0) is finite
at ε → 0:

Π(q2) − Π(0) =
Nc

(4π)2

∞∑
n=1

(
q2

m2(µ)

)n

PnAn(µ) . (17)

It does not depend on µ; substituting the solution of the
renormalization-group equations,

m(µ) = m̂

(
αs(µ)
αs(µ0)

)γm0/(2β0)

K(αs(µ)) ,

An(µ) = Ân

(
αs(µ)
αs(µ0)

)nγm0/β0

K2n(αs(µ)) , (18)

where γm0 = 6CF and

K(αs) = exp
∫ αs

0

(
γm(αs)
2β(αs)

− γm0

2β0

)
dαs

αs

= 1 +
γm0

2β0

(
γm1

γm0
− β1

β0

)
αs

4π
+ · · · (19)

we obtain the explicitly µ-independent form

Π(q2) − Π(0) =
Nc

(4π)2

∞∑
n=1

(
q2

m̂2

)n

PnÂn . (20)

At the 1/β0 order, Ân can be expressed [4] via Fn(0, u):

Ân = 1 +
1
β0

∫ ∞

0
Sn(u)e−u/βdu + O

(
1
β2

0

)
, (21)

where β (3) is taken at µ = µ0, and

Sn(u) =
Fn(0, u) − Fn(0, 0)

u

∣∣∣∣
µ=µ0

. (22)

It is most convenient to use

µ0 = e−5/6m (23)

(where m is the on-shell mass), then

Sn(u) =
CF

(n − 1)! (n + 2)!

×
[

Γ (u)Γ (n + u)Γ (n + 1 + u)Γ (2 − u)
Γ (2n + 2 + 2u)

Nn(0, u)

− (n − 1)! n!
(2n + 1)!

Nn(0, 0)
u

]
, (24)

where

N0(0, u) = −6u(1 + u) ,

N1(0, u) = − 4
3

(2 + u)(81 + 92u + 29u2 + 3u3) ,

N2(0, u) = − 2
9

(3 + u)(25920 + 33520u + 14786u2

+ 2887u3 + 336u4 + 27u5) ,

. . . (25)

and

N0(0, 0) = 0 , N1(0, 0) = −216 ,

N2(0, 0) = −17280 , . . . (26)

Exact results for the correlator are known up to three
loops [14]; for higher loops, we only know the terms with
the largest power of β0. The perturbative series for Â1,2
are presented in Appendix B. The three-loop coefficients
are not approximated well by the β0 terms (for nf = 4, 5).

The functions Sn(u) (24) have IR renormalon singu-
larities at u = 2, 3, . . . Therefore, the integral (21) is not
well-defined. We can take the residue at the leading pole
u = 2 as a measure of the ambiguity of this integral:

∆Ân =
CF

β0

n(n + 1)
(2n + 5)!

Nn(0, 2)e10/3
(

ΛMS

m

)4

. (27)

UV renormalon singularities at u = −1, −2. . . do not
produce ambiguities in the sum of the perturbative series.

The T -product of the currents in (1) is given by the
operator product expansion

Π(q2) = C0(q2) +
∑

i

Ci(q2)
〈Oi〉
mdi

, (28)

which separates short-distance contributions – Wilson co-
efficients Ci(q2) and long-distance ones – vacuum averages
of operators Oi with dimensions di. Until now, we discussed
the Wilson coefficient C0(q2) of the unit operator, or the
perturbative part of Π(q2). The leading power correction is
given by the contribution of the lowest-dimensional opera-
tor – the vacuum condensate

〈
αsG

a
µνGa

µν

〉
with dimension

4 [15]. Namely, Ân (21) contains the power correction [15]

− CF

6Ng

n(n + 1)(n + 2)(n + 3)
2n + 5

π
〈
αsG

a
µνGa

µν

〉
m4 , (29)

where Ng = CFNc/TF is the number of gluon colors. The
gluon condensate has an UV renormalon [16]. We give a
simple derivation of its UV renormalon ambiguity in Ap-
pendix A. The full correlator must be unambiguous: the
leading IR renormalon ambiguity of the leading Wilson
coefficient C0(q2) is canceled by the UV renormalon am-
biguity of the vacuum condensate in the leading power
correction. This explains why the leading IR renormalon
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is at u = 2. Combining (27), (29), and (60), we see that
the renormalon ambiguities cancel if

Nn(0, 2) = − 3
2

(n + 2)(n + 3)(2n + 4)! . (30)

And this is indeed so for N1,2(0, u) (25).
Note that if we rewrite the correlator (17), (20) via the

on-shell mass m,

Π(q2) − Π(0) =
Nc

(4π)2

∞∑
n=1

(
q2

m2

)n

PnAn , (31)

then

An = 1+
1
β0

∫ ∞

0
[Sn(u) + 2nSm(u)] e−u/βdu+O

(
1
β2

0

)
,

(32)
where [17]

Sm(u) = 6CF

[
Γ (u)Γ (1 − 2u)

Γ (3 − u)
(1 − u) − 1

2u

]
(33)

has the leading IR renormalon at u = 1/2. Therefore, the
coefficients in the perturbative series for An grow much
faster than for Ân. This growth is dominated by the factor
(m/m̂)2n; up to three loops, the exact perturbative coeffi-
cients in this factor, and hence in An = Ân(m/m̂)2n, are
rather well approximated by the leading large-β0 terms.

4 Structure of the leading IR renormalon

In this section, we shall investigate the coefficients of the
perturbative series

Ân = 1 +
∞∑

L=1

cn,L

(
αs(µ0)

4π

)L

(34)

at L � 1 using model-independent methods of [8,9] (here
µ0 is defined by (23)). The Borel images of these series are

Sn(u) =
∞∑

L=1

cn,L

(L − 1)!

(
u

β0

)L−1

, (35)

cn,L+1 =
(

β0
d
du

)L

Sn(u)

∣∣∣∣∣
u=0

. (36)

We can formally invert this transformation:

Ân = 1 +
1
β0

∫ ∞

0
Sn(u) exp

[
− 4π

β0αs(µ0)
u

]
du ; (37)

of course, this integral is ill-defined due to renormalon
singularities at u > 0.

These IR renormalon ambiguities ought to be compen-
sated by power corrections to the correlator. Adding the
gluon-condensate contribution [15,18] we require

Ân

(
q2

m̂2

)n

− (38)

4
3

an
CF

Ng

π
〈
αsG

a
µνGa

µν

〉
m

m4

(
1 + bn

αs(m)
4π

+ · · ·
) (

q2

m2

)n

to be free of leading (∼ Λ4
MS

) renormalon ambiguities. Here
a1 = 3/7, a2 = 5/3 (see (29)), and the coefficients in the
two-loop correction are [18]

b1 =
135779
3240

, b2 =
1969
42

. (39)

In fact, this correction has two color structures CF and
CA; unfortunately, only the results for SU(3)c are pre-
sented in [18]. We can re-express

〈
αs(µ)(Ga

µνGa
µν)µ

〉
via〈

β(αs(µ))(Ga
µνGa

µν)µ

〉
which is µ-independent to all orders.

Substituting also m̂/m, we see that

Ân − 16π2

3
an

β0

CF

Ng

〈
βGa

µνGa
µν

〉
m4

(
1 + b̂n

αs(µ0)
4π

+ · · ·
)

,

(40)
where

b̂n = bn − β1

β0
+ 2n

[
CF − γm0

2β0

(
γm1

γm0
− β1

β0

)]
, (41)

are free of leading renormalon ambiguities.
The UV renormalon ambiguity of the µ-independent

gluon condensate
〈
βGa

µνGa
µν

〉
can only be equal to Λ4

MS
times a dimensionless constant. We define

∆
〈
βGa

µνGa
µν

〉
= NG∆0 ,

∆0 = − 3
8π2 Nge10/3Λ4

MS (42)

(see (60)). In the large-β0 limit, NG = 1+O(1/β0); in gen-
eral, we cannot say much about this normalization factor,
except that it is some (unknown) constant of order 1. Using

ΛMS = µ0 exp
[
− 2π

β0αs(µ0)

] (
αs(µ0)

4π

)−β1/(2β2
0)

×Kβ(αs(µ0)) ,

Kβ(αs) = exp
∫ αs

0

(
1

2β(αs)
− 2π

β0αs
+

β1

2β2
0

)
dαs

αs

= 1 +
β2

1 − β0β2

2β3
0

αs

4π
+ · · · (43)

we see that the leading IR renormalon ambiguity of Ân

should be equal to exp [−8π/(β0αs(µ0))] times some frac-
tional powers of αs(µ0). In order to ensure this, the Borel
images should have a branching point at u = 2:

Sn(u) =
∑

i

ri

(2 − u)1+ai
+ · · · (44)

where the dots mean a contribution regular at u = 2. Then

∆Ân =
1
β0

exp
[
− 8π

β0αs(µ0)

]
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×
∑

i

ri

Γ (1 + ai)

(
β0αs(µ0)

4π

)−ai

. (45)

The requirement of the ambiguities cancellation deter-
mines the behavior of Sn(u) at u → 2:

Sn(u) = − 2anCFNGΓ (1 + a)βa
0

(2 − u)1+a
(46)

×
[
1 +

1
β0a

(
b̂n + 2

β2
1 − β0β2

β3
0

)
(2 − u) + · · ·

]
,

where a = 2β1/β2
0 . This result is model-independent; the

power of 2−u is exact. At the 1/β0 order, the formula (46)
reproduces the pole of (24) at u = 2.

The leading behavior of cn,L at L � 1 is determines,
according to (36), by the singularity of Sn(u) nearest to the
origin. The leading contribution ∼ L!(−β0)L comes from
the UV renormalon at u = −1. It is sign-alternating, and
thus not dangerous for the Borel summability. The leading
fixed-sign contribution comes from the IR renormalon at
u = 2. Calculating multiple derivatives of (46), we obtain
for this contribution

cn,L+1 (47)

= −anCFNGL!
(

β0

2

)L (
β0L

2

)a [
1 +

2b′
n

β0L
+ · · ·

]
,

where

b′
n = b̂n +

6β2
1 − 4β0β2 + β2

0β1

2β3
0

. (48)

The result (47) is also model-independent. It contains a
single unknown normalization constant NG (common to
all n). The power a of L in (47) is exact. The coefficients
b′
n are, for SU(3)c,

b′
1 =

4289
3240

+
5905

6
1
β0

− 119531
12

1
β2

0
+

34347
β3

0
,

b′
2 =

193
84

+
6449

6
1
β0

− 129803
12

1
β2

0
+

34347
β3

0
. (49)

For nf = 5, for example, the full coefficient of 1/L in (47)
is of order 10 (for both n = 1 and 2); this means that this
asymptotics is only applicable for L � 10.

5 Virtuality distribution functions

The renormalization-group invariants (21) at the 1/β0 or-
der can be rewritten in the form of the leading (one-gluon)
perturbative correction, but with the running (one-loop)
αs under the integral sign [6]:

Ân = 1 +
∫ ∞

0
wn(τ)

αs(
√

τµ0)
4π

dτ

τ
+ O

(
1
β2

0

)
, (50)

where the gluon-virtuality distribution functions wi(τ) are
given by

wn(τ) =
1

2πi

∫ +i∞

−i∞
Sn(u)τudu . (51)

If τ < 1, we can close the contour to the right, and find
wi(τ) as the sum of residues of the poles at u > 0 (IR
renormalons). If τ > 1, the sum of the residues of UV
renormalons (u < 0) is calculated instead.

Our result is

w1(τ) = CF

{
2
9

1
τ(4 + τ)4

×
[

− 60
(
80 − 312τ − 368τ2 − 122τ3 − 18τ4 − τ5

)

× 1√
τ(4 + τ)

log
√

τ +
√

4 + τ

2

+1200 − 4880τ − 4700τ2 − 2062τ3 − 391τ4 − 27τ5

]

+6θ(τ − 1)

}
,

w2(τ) = CF

{
1
27

1
τ2(4 + τ)6

×
[
840

(
1512 − 564τ + 356τ2

+ 2290τ3 + 1196τ4 + 274τ5 + 26τ6 + τ7
)

× 1√
τ(4 + τ)

log
√

τ +
√

4 + τ

2

− 317520 + 171360τ − 105084τ2 − 462224τ3

−543492τ4 − 254664τ5 − 60209τ6

−7008τ7 − 324τ8

]
+ 12θ(τ − 1)

}
. (52)

These functions are shown in Fig. 2.
The functions Sn(u) (24) are regular at u = 0: the

singularity of the first term is canceled by the second one.
We may retain only the first term in (24) when calculating
wn(τ), and use the contour to the right of the origin if
τ < 1 and to the left of it if τ > 1. This first term falls off
fast when Im u → ±∞, and we may close the contour in
any way we like. Therefore, the expressions for wn(τ) for
τ > 1 differ from those for τ < 1 by the residue of the first
term at u = 0. In other words, the distribution functions
contain θ(τ − 1) with the coefficient

−Fn(0, 0) = −CF
Nn(0, 0)

(n + 1)(n + 2)(2n + 1)!
, (53)

as confirmed by (52). Such θ(τ −1) terms appear in distri-
bution functions when the leading (one-gluon) perturbative
correction diverges, i.e., F (0, 0) 
= 0; see, e.g., [6, 7, 11].

The behavior of wn(τ) at τ → 0 is determined by the
leading IR renormalon. It is at u = 2, and hence wn(τ) ∼
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� � �

�

��

Fig. 2. Functions w1(τ)/CF (solid line) and w2(τ)/CF (dashed
line)

τ2:

w1(τ) = − 6
7

CFτ2 + · · · , w2(τ) = − 10
3

CFτ2 + · · · (54)

At τ → ∞, it is determined by the leading UV renormalon
at u = −1:

w1(τ) =
2
3

CF

(
10 log τ +

41
3

)
1
τ

+ · · · ,

w2(τ) =
256
9

CF
1
τ

+ · · · (55)

UV renormalon singularities in Sn(u) are double poles, and
hence wn(τ) behave not just as 1/τ , but contain logarith-
mic terms.

The integrals (50) are ill-defined, just like (21).
The one-loop running αs(

√
τµ0) has a pole at small τ =

(e5/6ΛMS/m)4, and we integrate across it. The ambiguity
is given by the residue; using the small-τ asymptotics (54),
we reproduce (27).

6 Conclusion

In this paper, we have considered the correlator of two
heavy-quark vector currents, expanded up to O(q4), at the
first order in 1/β0. The d-dimensional bare result is given
by (2)–(7). All 1/ε divergences cancel in Π(q2) − Π(0)
expressed via the renormalized coupling and mass. The fi-
nite part is given by (20)–(26). This result contains highest
powers of β0 in all orders of perturbation theory, and can be
used for checking future multiloop calculations. The Borel
image Sn(u) has IR renormalon singularities at u = 2, 3. . .
making the series not Borel-summable. The corresponding
ambiguities in the sum of the perturbative series for the
correlator are compensated by the UV renormalon ambi-
guities of the vacuum condensates which appear in power
corrections. This is explicitly demonstrated for the lead-
ing renormalon (u = 2) and the leading power correction
(gluon condensate), at the order 1/β0.

Fig. 3. Perturbative contribution to the gluon condensate

The structure of this leading IR renormalon can be
studied in a model-independent way, beyond the large-β0
limit, on the basis of the renormalization-group properties
of the gluon condensate. This singularity is a branching
point (46), where the power of 2 − u is known exactly,
and NG is an unknown normalization factor (one constant
for all Sn(u)). The leading fixed-sign asymptotics of the
perturbative coefficients (47) is also a model-independent
QCD result (we do not consider a larger alternating-sign
contribution of the UV renormalon at u = −1, which is
not dangerous for Borel summability).

The 1/β0-order results can be rewritten in the form of
the leading (one-gluon) perturbative correction, but with
the (1-loop) running αs under the integral sign. The func-
tions in these integrals have the meaning of the distribution
functions in the gluon virtuality in the one-gluon correc-
tions. They are presented in (52); see Fig. 2. Their behavior
at small virtualities is determined by the leading IR renor-
malon; in our case, it is at u = 2, and contributions from
small virtualities are strongly suppressed (as τ2). The be-
havior at large virtualities is determined by the leading
UV renormalon at u = −1, and the contributions of large
virtualities fall off slowly, as 1/τ (up to logarithms).
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Appendix A:
UV renormalon in the gluon condensate

Let us consider the perturbative contribution to the vac-
uum average of the bare operator g2

0Ga
0µνGa

0µν with a
sharp infrared cutoff λ (which should be large enough,
so that the perturbation theory makes sense). This op-
erator is not renormalized at one loop: g2

0Ga
0µνGa

0µν =
4παs(µ)(Ga

µνGa
µν)µ. At the order 1/β0, we need to cal-

culate diagrams in Fig. 3. The result can be written as

4π
〈
αsG

a
µνGa

µν

〉
λ

=
1
β0

∞∑
L=1

F (ε, Lε)
L

(
β

ε + β

)L

+ O
(

1
β2

0

)
, (56)
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where

F (ε, u) = −2NgD(ε)u/ε−1eγε
(

µ2

λ2

)u

λ4 3 − 2ε

Γ (2 − ε)
u

2 − u
,

(57)
Ng = CFNc/TF is the number of gluon colors. The coeffi-
cient of 1/ε vanishes in (56), as expected, because F (ε, 0) =
0. Therefore, it is finite at ε → 0:

4π
〈
αsG

a
µνGa

µν

〉
λ

=
1
β0

∫ ∞

0
S(u)e−u/βdu + O

(
1
β2

0

)
,

(58)
where

S(u) =
F (0, u) − F (0, 0)

u
= − 6Ngλ

4

2 − u
(59)

if we choose µ0 = e−5/6λ. The gluon condensate has a UV
renormalon at u = 2; its ambiguity is given by the residue:

∆π
〈
αsG

a
µνGa

µν

〉
= − 3

2
Ng

β0
e10/3Λ4

MS . (60)

Appendix B: Perturbative series for Â1,2

Â1 = 1

+
{

329
27

+
15CF + 16CA

β0
− 6CA(11CF + 7CA)

β2
0

}

×CF
αs(µ0)

4π

+
{

− 1639
81

β0 +
(

120817
576

ζ3 − 63323
288

)
CF

+
(

4183
128

ζ3 − 170077
5184

)
CA +

(
1015
72

ζ3 − 25187
972

)
TF

+
[

1643
18

C2
F +

(
−132ζ3 +

13795
54

)
CFCA

+
(

132ζ3 − 131
6

)
C2

A

]
1
β0

+
(

225
2

C3
F − 3296

9
C2

FCA − 1661
18

CFC2
A +

161
8

C3
A

)
1
β2

0

− 3CA(11CF + 7CA)(30C2
F + 43CFCA + 7C2

A)
β3

0

+
18CFC2

A(11CF + 7CA)2

β4
0

}
CF

(
αs(µ0)

4π

)2

+
{(

−24ζ3 +
20398
243

)
β2

0 + · · ·
}

CF

(
αs(µ0)

4π

)3

+
{(

108ζ4 +
1316

9
ζ3 − 122120

243

)
β3

0 + · · ·
}

×CF

(
αs(µ0)

4π

)4

+ · · · ,

Â2 = 1

+
{

2333
135

+
2(15CF + 16CA)

β0
− 12CA(11CF + 7CA)

β2
0

}

×CF
αs(µ0)

4π

+
{

− 392279
16200

β0 +
(

34224293
9216

ζ3 − 8150760227
1866240

)
CF

+
(

22668817
55296

ζ3 − 1822035101
3732480

)
CA

+
(

497105
18432

ζ3 − 353936273
6220800

)
TF

+
[

3019
9

C2
F +

(
−264ζ3 +

90991
135

)
CFCA

+
(

264ζ3 − 131
3

)
C2

A

]
1
β0

+
(

450C3
F − 41632

45
C2

FCA − 16049
45

CFC2
A +

161
4

C3
A

)
1
β2

0

− 6CA(11CF + 7CA)(60C2
F + 75CFCA + 7C2

A)
β3

0

+
72CFC2

A(11CF + 7CA)2

β4
0

}
CF

(
αs(µ0)

4π

)2

+
{(

−48ζ3 +
26770423
243000

)
β2

0 + · · ·
}

CF

(
αs(µ0)

4π

)3

+
{(

216ζ4 +
9332
45

ζ3 − 791737663
1215000

)
β3

0 + · · ·
}

×CF

(
αs(µ0)

4π

)4

+ · · ·

Numerically,

Â1 = 1 +
(

4.06173 +
22.6667

β0
− 214

β2
0

)
αs(µ0)

π

+
(

−1.68621β0 + 4.82974 +
148.415

β0
− 187.540

β2
0

− 7712.92
β3

0
+

22898
β4

0

) (
αs(µ0)

π

)2

+(1.14777β2
0 + · · · )

(
αs(µ0)

π

)3

+(−1.09319β3
0 + · · · )

(
αs(µ0)

π

)4

+ · · ·

Â2 = 1 +
(

5.76049 +
45.3333

β0
− 428

β2
0

)
αs(µ0)

π

+
(

−2.01790β0 + 10.8546 +
373.841

β0
− 588.373

β2
0
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− 25127.2
β3

0
+

91592
β4

0

) (
αs(µ0)

π

)2

+(1.09307β2
0 + · · · )

(
αs(µ0)

π

)3

+(−0.87799β3
0 + · · · )

(
αs(µ0)

π

)4

+ · · ·
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